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Abstract
In the language of quantum information theory we study the entropy squeezing
of a two-level atom in a Kerr-like medium. A definition of squeezing is
presented for this system, based on information theory. The utility of the
definition is illustrated by examining the entropy squeezing of a two-level atom
with a Kerr-like medium. The influence of the non-linear interaction of the Kerr
medium, the atomic coherence and the detuning parameter on the properties of
the entropy and squeezing of the atomic variables is examined.

PACS numbers: 03.67.−a, 03.65.Ta, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently the new field of quantum information and computation has emerged, not only offering
the potential of immense practical computing power, but also suggesting deep links between
the well-established disciplines of quantum theory, information theory and computer science.
Theoretically quantum computers can perform some types of calculations much faster than
classical computers [1], but the technological difficulties of manipulating quantum information
have so far prevented researchers from constructing a quantum computer which is able to
perform useful tasks. The difficulty of building a quantum computer was greatly diminished
when it was realized that a network of quantum phase gates operating in the product space
of two qubits, single-bit rotations and single-bit phase shift gates can constitute a universal
quantum computer [2]. The quantum phase gate simply gives the product state of two qubits
a phase shift depending on the values of each qubit. In other words, the quantum phase gates
perform the operation |00〉, eiα|01〉, eiβ |10〉, eiγ |11〉 in the computational basis of the two
qubits. Provided that α + β �= γ (mod 2π), a network of quantum phase gates supplemented
with single-bit gates can mimic the operation of any other unitary operator acting on the
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qubits. Recently an implementation of a quantum phase gate has been demonstrated [3]
utilizing Rydberg states and a photon in a microwave cavity. The field of quantum information
and computing is based on manipulation of quantum coherent states [4]. The existing devices
of quantum optics have been proposed as experimental implementation and employed to
realize quantum computers. A scheme depending on applications of the displacing operator
and propagating a laser beam in a non-linear Kerr medium has been proposed to perform
quantum gates [5].

In the meantime squeezing states of light offer possibilities of improving the performance
of optical devices since they can reduce fluctuations in one of the quadratures below the level
associated with the vacuum states [6]. This situation is relevant for the optical communication
networks as well as for many optical devices. Such a light has recently been used in a
power-recycled interferometer [7] and in a phase-modulated signal-recycled interferometer [8],
aiming to improve significantly the sensitivity of these devices. It has been shown that this
light can be used to tune the resonant frequency of the cavity without actually moving the
signal recycling mirror, or changing the bandwidth of the interferometer without substantially
decreasing the sensitivity at the resonant frequency [8]. Also we may point out that squeezed
light has been applied in quantum information theory, for example, in quantum teleportation
[9, 10], cryptography [11, 12] and dense coding [13].

In this respect the security in quantum cryptography [14] relies on the uncertainty relation
for field quadrature components of these states. Here we may refer to the experiments
on quantum teleportation which have been successfully performed by means of two-
mode squeezed vacuum states [15]. Also it is worthwhile mentioning that all experimental
proposals for teleportation have involved dichotomic variables in SU (2) with optical schemes
accomplishing the Bell-operator measurement with low efficiency.

On the other hand, an optical medium exhibiting the frequency-independent Kerr effect
is governed by a non-linear polarization vector P or a field-dependent susceptibility with
components

Pi = χ
(1)
i,j Ej + χ

(2)
i,j,kEjEk + χ

(3)
i,j,k,lEjEkEl (1)

whereEi,Ej ,Ek andEl are the electric fields, χ(1)
i,j gives rise to the familiar dispersion relation

χ
(2)
i,j,k leads to a cubic nonlinearity which is responsible for three-wave mixing processes in

parametric devices as well as second harmonic and subharmonic generations, while χ(3)
i,j,k,l is

responsible for four-wave mixing processes which have recently found considerable interest
in connection with the phenomena of optical phase conjugation, real time holography, image
correlation and different multiphoton spectroscopy techniques. A more familiar four-wave
process is the stimulated Raman- and Brillouin-scattering, and the parametric coupling of
Stokes and anti-Stokes radiation.

The behaviour of the electric fields representing the two qubits as they travel through the
Kerr medium is given by the Hamiltonian

H = 1

2

∫
1

µ0
B2 dv +

1

2

∫
ε0E

2 dv +
1

2

∫
χE2 dv +

3

4

∫
EP

(3)
NL dv (2)

whereµ0 and ε0 are the permeability of the non-magnetic material and the susceptibility of the
electric field, respectively, B is the total magnetic field and P

(3)
NL is the non-linear part of the

polarization vector including frequency-dependent terms. We may simplify this complicated
Hamiltonian by choosing the two frequencies of the electric fields to be nearly resonant
with excitations of the medium [16], however exactly resonant photons will suffer from loss.
Therefore it will be more convenient to keep the fields slightly detuned. Here we may refer to
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the experimental work by Sinatra et al [17], who used different energy transitions to couple
two laser beams through a gas of 87Rb where the photons in this case interact with a three-level
system.

In fact the quantum phase gate can operate in the product space of the polarizations
for two photons by using the optical Kerr effect, where the photons are made to interact as
they pass through a material with a third-order non-linear susceptibility. In the presence of a
superposition of electromagnetic waves at different frequencies and/or in different directions,
these materials are used in four-wave mixing applications, such as frequency conversion, phase
conjugation, etc, see above. It is also noted that in the presence of a wave at a single frequency,
the refractive index of such materials is intensity dependent and gives rise to the phenomenon
of self-focusing [18]. Therefore, when a superposition of waves is presented, the optical Kerr
effect produces an interaction in which the intensity of one frequency component influences
the index of refraction of another frequency component. As described by Mandel and Wolf
in [19], this effect can be used to perform quantum non-demolition and back-action evading
measurements, during which the intensity of one frequency component can be used to control
the phase of another without altering the photon number of either component. Thus without loss
of photon number, the frequency components can become entangled in a way that lends itself
well to quantum computations. From the quantum information point of view, we shall consider
the problem of entropy squeezing (von Neumann entropy) for a two-level atom interacting
with a single mode in the presence of a Kerr-like medium. The organization of the paper is as
follows: in section 2 we introduce our Hamiltonian model and give an exact expression for the
density matrix ρ̂(t). In section 3 we employ the density matrix to investigate the properties of
the entropy squeezing. Finally we devote section 4 to our discussion of the results.

2. The Hamiltonian model

Here we shall consider the Hamiltonian of a model that consists of a two-level atom interacting
with a quantized radiation field taking into consideration an ideal cavity (Q = ∞) filled with
a non-linear Kerr-like medium in the rotating wave approximation frame. We shall assume
that the cavity mode is interacting with both the atom and the Kerr-like medium. Although
in reality a cavity cannot be absolutely perfect, however the authors of [20] in their analysis
have shown that, for a cavity with finite bandwidth at nonzero temperature T, the effects of
the bandwidth and the temperature are negligible until time t ∼ 10−3 (λt = 30) from the
start of the interaction, provided that the values for Q and T are Q = 2 × 1010 and T = 0.5 K.
Kerr effects can be observed by surrounding the atom by a non-linear medium inside a high-Q
cavity [21].

The effective Hamiltonian model representing the interaction between a two-level atom
and a single-mode cavity (h̄ = c = 1) in the presence of a Kerr-like medium in the rotating
wave approximation can be written as

Heff = ωcâ
†â +

ωa

2
(|e〉〈e| − |g〉〈g|) + χâ†2â2 + λ(â†|g〉〈e| + â|e〉〈g|) (3)

where ωc is the field frequency, ωa is the transition frequency between the excited and the
ground states of the atom and λ is the effective coupling constant. We denote by χ the
dispersive part of the third-order nonlinearity of the Kerr-like medium, with the detuning
parameter # = ωa − ωc. We consider that at t = 0 the atom is initially in the coherent state
|θ, φ〉 given by

|θ, φ〉 = cos(θ/2) |e〉 + sin(θ/2) exp(−iφ) |g〉 (4)
where φ is the relative phase of the two atomic levels. For the excited state we take θ → 0
while for θ → π the wavefunction describes the atom in the ground state. Further we assume
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that the field is initially in the coherent state, |α〉 = ∑∞
n qn |n〉, where qn describes the

amplitude for the field mode in the state |n〉. Now if we take α = |α|eiβ and consider that
at t = 0 the field–atom system is decorrelated, then the initial density operator of the system
is ρ(0) = ρf (0) ⊗ ρa(0), where ρf (0) = |α〉〈α| and ρa(0) = |θ, φ〉〈θ, φ| describe the initial
densities for the field and the atom, respectively.

At any time t > 0 the density matrix of the system can be written as

ρ(t) =
∞∑
n=0

∞∑
m=0

(an(t)a
∗
m(t) |n, g〉〈m, g| + bn(t)b

∗
m(t) |n, e〉〈m, e|

+ an(t)b
∗
m(t) |n, g〉〈m, e| + bn(t)a

∗
m(t) |n, e〉〈m, g|) (5)

where the coefficients an(t) and bn(t) are, respectively, given by

an(t) = e−iλt,n

[
sin(θ/2)e−iφqn

(
cos λtµn + iWn

sinλtµn

µn

)

− i cos(θ/2)qn−1

√
n sin λtµn

µn

]
(6)

bn(t) = e−iλt,n+1

[
cos(θ/2)qn cos λtµn+1 − i[Wn+1 cos(θ/2)qn

+ sin(θ/2)e−iφqn+1

√
n + 1]

sinλtµn+1

µn+1

]
. (7)

The quantities µn, ,n andWn in the above equations are

µn =
√
n + W 2

n ,n = χ

λ
(n − 1)2 Wn = #

2λ
− χ

λ
(n − 1). (8)

Having obtained the density matrix ρ̂, we are in a position to discuss the properties of the
atom and the field. This will be seen in section 3.

3. Entropy squeezing

The quantum dynamics described by the Hamiltonian (3) leads to an entanglement between the
field and the atom in the system under consideration. In this section we shall employ the
uncertainty relation to study the squeezing entropy. Although the Heisenberg uncertainty
relation cannot give us sufficient information on the atomic squeezing for some cases, however
it can be used as a general criterion for the squeezing in terms of entropy of a two-level atom
in the Jaynes–Cummings model.

The uncertainty relation for a two-level atom characterized by the Pauli operators Sx,

Sy andSz is given by

#Sx#Sy � 1
2 |〈Sz〉| (9)

where #Sα = √〈S2
α〉 − 〈Sα〉2.

Fluctuations in the component Sα of the atomic dipole are said to be squeezed if Sα satisfies
the condition

V (Sα) =
(
#Sα −

√
|〈Sz〉|

2

)
< 0 α = x or y. (10)

Recently in an even N-dimensional Hilbert space, the optimal entropic uncertainty relation
for sets of N + 1 complementary observables with non-degenerate eigenvalues has been
investigated [22]. This can be described by the inequality

N+1∑
k=1

H(Sk) � N

2
ln

(
N

2

)
+

(
1 +

N

2

)
ln

(
1 +

N

2

)
(11)
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where H (Sk) represents the entropy of the variable Sk. On the other hand, for an arbitrary
quantum state the probability distribution for N possible outcomes of measurements of the
operator Sα is

Pi(Sα) = 〈4αi |ρ |4αi〉 α = x, y, z i = 1, 2, . . . , N (12)

where |4αi〉 is an eigenvector of the operator Sα such that

Sα|4αi〉 = λ
αi
|4αi〉 α = x, y, z i = 1, 2, . . . , N. (13)

The corresponding entropies are defined as

H(Sα) = −
N∑
i=1

Pi(Sα) lnPi(Sα) α = x, y, z. (14)

Thus, to obtain the entropies of the atomic operators Sx, Sy and Sz for a two-level atom,
with N = 2, one can use the reduced atomic density operator ρ (t). For the present case we
find that

H(Sx) = − [
1
2 + Re{ρge(t)}

]
ln
[

1
2 + Re{ρge(t)}

]− [
1
2 − Re{ρge(t)}

]
ln
[

1
2 − Re{ρge(t)}

]
(15)

H(Sy) = − [
1
2 + Im{ρge(t)}

]
ln
[

1
2 + Im{ρge(t)}

]− [
1
2 − Im{ρge(t)}

]
ln
[

1
2 − Im{ρge(t)}

]
and

H(Sz) = −ρgg(t) lnρgg(t) − ρee(t) ln ρee(t) (16)

where the quantities ρgg(t), ρge(t), ρee(t) andρeg(t) = ρ∗
ge(t) are determined from the

relations

ρgg(t) =
∞∑
n=0

Pn

[
sin2(θ/2)

(
cos2 λtµn +

W 2
n sin2 λtµn

µ2
n

)
+

(
n sin λtµn cos(θ/2)

|α|µn

)2

+
2n sin λtµn sin θ

|α|µn

(
cosλtµn sin(φ − β) − Wn sinλtµn cos(φ − β)

µn

)]

(17)

and

ρee(t) =
∞∑
n=0

Pn

[
cos2(θ/2)

(
cos2 λtµn+1 +

W 2
n+1 sin2 λtµn+1

µ2
n+1

)

+

( |α| sin λtµn+1 sin(θ/2)

µn+1

)2

− 2|α| sin λtµn+1 sin(θ)

µn+1

×
(

cosλtµn+1 sin(φ − β) − Wn+1 sin λtµn+1 cos(φ − β)

µn+1

)]
(18)

while

ρge(t) = R(t) − iV (t) (19)

with

R(t) =
∞∑
n=0

Pn

[(
R2(t) +

R1(t) sin θ

2

)
cosλt (,n+1 − ,n)

+

(
V2(t) +

V1(t) sin θ

2

)
sin λt (,n+1 − ,n)

]
(20)



9134 M Abdel-Aty et al

and

V (t) =
∞∑
n=0

Pn

[(
V2(t) +

V1(t) sin θ

2

)
cos λt (,n+1 − ,n)

−
(
R2(t) +

R1(t) sin θ

2

)
sin λt (,n+1 − ,n)

]
. (21)

The expressions for Ri(t) and Vi(t), i = 1, 2, in the above equations are given by

R1(t) =
(

cos λtµn cos λtµn+1 − WnWn+1 sin λtµn sinλtµn+1

µnµn+1

)
cosφ

+

(
Wn sin λtµn cosλtµn+1

µn

+
Wn+1 sin λtµn+1 cosλtµn

µn+1

)
sinφ

+
n sin λtµn sinλtµn+1 cos(φ − 2β)

µnµn+1
(22)

R2(t) = |α| sin λtµn+1 sin2(θ/2)

µn+1

(
cosλtµn sinβ − Wn sin λtµn cosβ

µn

)

− n sin λtµn cos2(θ/2)

|α|µn

(
cosλtµn+1 sin β − Wn+1 sin λtµn+1 cosβ

µn+1

)
(23)

V1(t) =
(

cosλtµn cosλtµn+1 − WnWn+1 sin λtµn sin λtµn+1

µnµn+1

)
sin φ

−
(
Wn sin λtµn cosλtµn+1

µn

+
Wn+1 sin λtµn+1 cosλtµn

µn+1

)
cosφ

− n sin λtµn sinλtµn+1 sin(φ − 2β)

µnµn+1
(24)

V2(t) = n sin λtµn cos2(θ/2)

|α|µn

(
cos λtµn+1 cosβ +

Wn+1 sin λtµn+1 sin β

µn+1

)

− |α| sin λtµn+1 sin2(θ/2)

µn+1

(
cosλtµn cosβ +

Wn sinλtµn sin β

µn

)
. (25)

For a two-level atom, where N = 2, we have

0 � H(Sα) � ln 2 (26)

and hence, the entropies of the operators Sx, Sy and Sz will satisfy the inequality

H(Sx) + H(Sy) � 2 ln 2 − H(Sz). (27)

In other words if we define

δH(Sα) = exp[H(Sα)] (28)

the inequality (27) can be written as

δH(Sx)δH(Sy) � 4

δH(Sz)
. (29)

Now if δH (Sα) = 1, the atom will be in a pure state; however, when δH (Sα) takes the
value 2, the atom will be in a completely mixed state. Since the quantities δH (Sx) and δH (Sy)
only measure the uncertainties of the atomic polarization components Sx and Sy, respectively, it
is clear from the entropic uncertainty relation (11) that it is impossible to simultaneously have
complete information about the observables Sx and Sy. Now let us define here the squeezing of
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Figure 1. The time evolution of the squeezing factors of a two-level atom interacting with a single
mode in the absence of a Kerr-like medium. The atom is initially in the excited state and the field
is in the coherent state with the initial average photon number n̄ = 25. (a) The entropy squeezing
factor E (Sx); (b) the entropy squeezing factor E (Sy); (c) the variance squeezing factor V (Sx);
(d) the variance squeezing factor V (Sy) and (e) the time evolution of the atomic inversion under
the same conditions.

the atom using the inequality (27), called entropy squeezing, which has in fact received a little
attention in the literature. The fluctuations in component Sα (α = x or y) of the atomic dipole
are said to be ‘squeezed in entropy’ if the information entropy H(Sα) of Sα satisfies the condition

E(Sα) =
(
δH(Sα) − 2√|δH(Sz)|

)
< 0 α = x or y. (30)
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Figure 2. The time evolution of the squeezing factors of a two-level atom interacting with a
single mode in the absence of a Kerr-like medium. The atom is initially in the superposition state,
θ = π/2, φ = π/4, and the field is in a coherent state with n̄ = 25 and β = π/4. (a) The entropy
squeezing factor E (Sx); (b) the entropy squeezing factor E (Sy); (c) the variance squeezing factor
V (Sx); (d) the variance squeezing factor V (Sy) and (e) the time evolution of the atomic inversion
under the same conditions.

Employing the results obtained here we shall be able to discuss the entropy squeezing.
This will be done in section 4.

4. Discussion and conclusion

On the basis of the analytical solution presented in section 3, we shall examine the temporal
evolutions of the entropy squeezing (Von Neumann entropy) and variance squeezing.
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Figure 3. The time evolution of the squeezing factors of a two-level atom interacting with a
single mode with a Kerr-like medium, χ/λ = 0.5, and in the presence of the detuning parameter
#/λ = 10. The atom is initially in the superposition state, θ = π/2, φ = π/4, and the field is in a
coherent state with n̄ = 25 and β = π/4. (a) The entropy squeezing factor E (Sx); (b) the entropy
squeezing factor E (Sy); (c) the variance squeezing factor V (Sx); (d) the variance squeezing factor
V (Sy) and (e) the time evolution of the atomic inversion under the same conditions.

The time evolutions of the squeezing factorsE(Sx),E(Sy), V (Sx) andV (Sy) are shown in
figures 1(a)–(d ) but the atomic inversion 〈σz(t)〉 is plotted in figure 1(e), for an atom initially
in the excited state (θ = 0) with the mean photon number n̄ = 25, the relative phase β = 0 and
in the absence of the Kerr medium and detuning parameter. Figures 1(a) and (c) predict no
squeezing in the variable Sx when the atom is initially in the excited state, but figures 1(b) and
(d ) present a great difference between E(Sy) andV (Sy):E(Sy) shows entropy squeezing
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Figure 4. The time evolution of the squeezing factors of a two-level atom interacting with a single
mode with a Kerr-like medium, χ/λ = 0.2, and in the absence of the detuning parameter #/λ = 0.
The atom is initially in the superposition state, θ = π/2, φ = π/4, and the field is in a coherent
state with n̄ = 25 and β = π/4. (a) The entropy squeezing factor E (Sx); (b) the entropy squeezing
factor E (Sy); (c) the variance squeezing factor ,(Sx); (d) the variance squeezing factor V (Sy) and
(e) the time evolution of the atomic inversion under the same conditions.

during the collapse for the atomic inversion W(t) as figure 1(b) exhibits, while V (Sy) predicts
variance squeezing in a short duration during the atomic inversionW(t) revival, see figure 1(e).

Figure 1(b) shows that at half the revival time where t = tR/2 = π

√
n̄
λ

= 5π
λ

, optimal
entropy squeezing is attained, because at t = tR/2 the atom has achieved an almost pure
state |4A(tR/2)〉 � 1√

2
(|e〉+ |g〉) at θ = π/2 andφ = π/2. This state is just an eigenstate
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Figure 5. The time evolution of the squeezing factors of a two-level atom interacting with a single
mode in the absence of a Kerr-like medium χ/λ = 0 and in the presence of the detuning parameter
#/λ = 10. The atom is initially in the superposition state, θ = π/2, φ = π/4, and the field is in a
coherent state with n̄ = 25 and β = π/4. (a) The entropy squeezing factor E (Sx); (b) the entropy
squeezing factor E (Sy); (c) the variance squeezing factor ,(Sx); (d) the variance squeezing factor
V (Sy) and (e) the time evolution of the atomic inversion under the same conditions.

of the atomic operator Sy, then we have #Sy = 0 is the smallest possible value as seen in
figure 1(d) and does not exhibit any variance squeezing around this time, since the atomic
inversion satisfies 〈σz(t)〉 = 0 at t = tR/2.

To realize the effect of the atomic superposition on the entropy squeezing and variance
squeezing, we set θ = π/2, φ = π/4 and the field in a coherent state with n̄ = 25 andβ = π/4.
It is obvious from figures 2(a) and (b) that the entropies for the quadratures Sx and Sy
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show alternating squeezing whereas V (Sx) andV (Sy), as illustrated in figures 3(c) and (d),
respectively, display no variance squeezing. In figure 2(b) we see that entropy squeezing
occurs where the atomic inversion is close to zero. This is almost the case of a trapped
coherent state [23].

The effect of a Kerr medium on the squeezing of the entropy and variances is depicted in
figures 3 and 4. We take the same parameters as in figure 2 and put χ/λ = 0.2. The effect
of a Kerr medium on the atomic occupation number results in inhibiting energy in the atomic
system. The more χ/λ increases, the higher the mean values for W(t) as shown in figure 3(e).
Also it results in faster oscillations of the atomic inversion. This is also reflected in the
behaviour of both entropy and variance squeezing quantities, E (Sx) and E (Sy); periodic
variance squeezing is also observed in all of these quantities.

The detuning effect results in elongating the revival time TR = 2π
√
n̄ + #2/4 as can be

seen in figure 5. Also the atomic system loses some of its energy to the system as can be shown
from the mean value for W(t) that attains a lower value than that in the case of resonance.
Squeezing of all quantities appears for this case; however, the amount of squeezing is not as
pronounced as in the case of resonance.

Thus we have shown in the above sections that in our system the effect of a Kerr-like
medium on the entropy is negative and the effect of detuning on the atomic variable squeezing
is positive. This emphasizes the fact that the atomic coherence has a remarkable effect on
the squeezing of the entropy, and the system of the Jaynes–Cumming model with a Kerr-like
medium can have a potential application in the field of quantum information.
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